本文以生物发酵制药行业作为研究对象,总结了不同生产流程、污水处理站和菌渣处理阶段vocs和异味的污染特征,并在此基础上系统概述了应用于vocs和异味末端治理技术的发展现状。因此,为更好地解决生物发酵制药行业vocs和异味污染问题
vocs是指有光化学反应活性的有机化合物[4],而异味是指一切刺激嗅觉器官并引起人们不愉快及损害生活环境的气体物质[5,6]。因此,从污染物成分上看,vocs与异味污染存在交叉重叠,即大部分vocs有异味,而异味物质还包括h2s和nh3等无机物。有研究表明,vocs与异味污染物一般具有较强的刺激性和毒性,部分表现出致畸、致癌和致突变作用,在大气光化学反应作用下可生成o3和二次有机气溶胶(soa)等污染物,引起光化学烟雾和灰霾等环境问题,导致区域大气复合污染。由于存在多种生化反应和纯化学合成反应过程,生物发酵制药在不同产品、不同阶段、不同工况下排放废气的种类和浓度变化较大。有研究指出,生物发酵制药是制药行业中vocs 和异味排放种类最多、浓度最大的一类。然而,国内外有关污染物污染特征和治理技术的基础研究均明显不足,使得vocs和异味排放问题成为很多发酵制药企业久治不愈的环保难题,甚至造成企业面临不得不搬迁甚至关停的情况。
“十三五”规划纲要中要求重点区域、重点行业排放的挥发性有机物总量下降10%以上。发酵类原料药生产作为制药行业污染防治的重点,“十三五”规划纲要的出台标志着对其排放vocs和异味等大气污染物的防治工作提升到了一个新的水平,但由于在治理手段方面仍有许多技术瓶颈,亟需进行更深入的基础研究和技术研发以推动有关领域的发展。因此,本文将针对生物发酵制药行业vocs和异味污染问题,在总结分析污染特征的已有认识基础上,归纳适用于生物发酵制药行业的废气末端治理技术,强调应形成“源头-过程-末端-管理”系统的vocs及异味治理技术思路,以期为生物发酵制药企业制定vocs和异味污染控制政策,改善环境空气质量提供思路和参考。
据报道,青霉素发酵尾气中vocs 种类和浓度在升温、保压、降温和发酵(呼吸)这4 个阶段中有较大差异,总体来看,氯代烃类所占比例最大(24.6%~78.8%),其次是酯类(11.2%~52.4%),这两类物质占tvocs 含量的90%以上;其中升温阶段vocs 含量最高(5416.4 mg·m-3),其次是降温阶段(1099.6 mg·m-3),发酵阶段vocs含量最低(202.0 mg·m-3),均超过地方有关标准(db13/2208-2015)[20]2~90 倍。这是由于灭菌阶段处于高温环境,有利于有机溶剂的挥发。此外,在灭菌阶段和发酵阶段的尾气中均检测到高浓度的乙酸乙烯酯、三氟三氯乙烷、二氯四氟乙烷、二氯乙烯,但这些高浓度污染物的来源、成因和异味贡献仍不明确。天津某生物发酵制药企业发酵塔排放尾气中主要的污染物为烷烃和含氧有机物,其中戊烷、丙酮和乙醇占总质量浓度的50.6%,乙醇的质量浓度百分比高达22.1%,发酵塔排气口的臭气浓度超过6000。表1总结了青霉素、泰乐菌素和硫氰酸红霉素发酵废气中的特征污染物及其理化性质。
据报道,青霉素结晶工序、干燥工序和结晶车间可监测到至少62种vocs,其中结晶工序产生的污染物种类最多(55 种),tvocs浓度范围为29.6~446.7 mg·m-3,干燥工序和结晶车间排气口处tvoc浓度相对较低,分别为8.5~14.3mg·m-3 和3.0~11.6mg·m-3。乙酸丁酯、正丁醇和丙酮作为青霉素提取阶段的原料,在各工序排放尾气中均能检测到,且各监测点污染物浓度波动范围较大,种类复杂,这是由于所有的化学反应不可能完全进行。此外,vocs在气相降解过程中与·oh、so2、氮氧化物等均会发生反应,进而产生二次污染物。jenkin 等提出的mcm(master chemical mechanism)模型表明,乙酸丁酯和正丁醇在气相降解过程中涉及100多种物质,这也进一步解释了青霉素提取过程中vocs和异味物质种类繁多的原因。
乙酸丁酯、正丙醇和丙酮等有机溶剂是青霉素、红霉素和四环素等抗生素提取过程常用的溶媒,通过调研分析,这些药企周边环境空气检出率最高、检出浓度最大的污染物基本上是提取阶段使用的酯类、醇类和酮类等有机溶剂。虽然这些含氧有机物的嗅阈值与硫化物、醛类和有机酸类物质相比较高,但当浓度较高时仍对人体有较大刺激性。例如,乙酸丁酯为水果香味、嗅阈值为0.076mg·m-3,正丙醇为酒精味、嗅阈值为0.23 mg·m-3,丙酮为辛辣甜味、嗅阈值为99.8mg·m-3,而醛类和有机酸类的嗅阈值一般在0.05mg·m-3 以下。表2 总结了青霉素、泰乐菌素、硫氰酸红霉素、维生素c 和维生素b12提取废气的特征污染物及其理化性质。
污水处理站产生的废气与废水处理工艺和运行工况密切相关,各处理单元产生的vocs和异味在种类和浓度上存在极大差异。据报道,某维生素c 生产企业的污水处理站采用预处理 uasb/ic sbr工艺,其污水处理能力为2.2万m3·d-1,各处理单元环境空气中共检测到32 种vocs,其中沉砂池检测到的污染物种类最多,为25种,sbr池仅检测到19种;tvocs浓度范围为1.0~32.1mg·m-3,主要的污染物是氯代烃类和酮类,分别占监测总量的6.4%~55.8%和10.4%~58.1%,其中沉砂池是整个废水处理系统vocs源强最大的单元。上述作者分析,这是由于污水中含有大量菌丝体、蛋白质、残留的营养物质以及生物成的代谢产物,造成沉砂池有机物浓度较高,沉砂池为半密闭状态,剧烈的曝气作用使大量的vocs和异味逸散,此外,表面挥发作用也能够加剧沉砂池vocs和异味的排放。
菌渣是发酵制药产生的主要固废,主要成分是微生物菌丝体,代谢产物以及未利用完的有机物、无机盐等。据统计,每生产1t发酵类抗生素原料药将产生8~10t的新鲜菌渣(含水率约为70%),我国每年的发酵类抗生素制药菌渣产量在160~210 万t 左右。在高温和长期贮存的条件下,废渣会进行发酵,产生臭味。例如,新鲜青霉素菌渣的初始状态为灰黄色、无味,二次发酵后,固体会自溶变稀,发出恶臭味,并产生大量的nh3。因此,菌渣的存放和处置是发酵制药企业在异味治理和精细化管理上需要进一步改进完善的内容之一。
据报道,西安利君制药采用“臭氧-uv-喷淋”组合工艺对红霉素发酵尾气进行处理,即旋风分离后的发酵尾气首先通入臭氧进行一级氧化,之后进行紫外光光氧化,最后经氧化喷淋和吸收喷淋后排放。利用手持式检测器对处理前后的污染情况进行分析,vocs 和ch4 的净化效率分别为79.7%和73.8%,出口h2s的浓度低于仪器检出限,并且发酵生产车间周围已没有“苦涩味”,发酵尾气达到了无气味排放的要求。
然而,本研究团队的研究结果表明(数据尚未发表),在多种发酵尾气中通入臭氧的氧化除臭效果并不理想,主要是由于反应时间不足、臭氧氧化能力有限,并且臭氧如在后续喷淋吸收过程中不能很好去除,还可能造成二次污染,增加废气的臭气浓度。因此,在将臭氧应用于发酵尾气治理的过程中,必须组合其他工艺对处理后的尾气进行妥善处理。
继光氧化和等离子技术之后,“吸附浓缩 燃烧”组合工艺正逐渐成为vocs 和异味治理的主流措施。某青霉素生产企业的发酵尾气首先采用沸石转轮吸附浓缩技术,其中改性cu/nay 型沸石分子筛作为吸附材料,单台分子筛的处理气量为3 万 m3·h-1,总处理规模为12 万 m3·h-1,脱附后的浓缩废气采用催化氧化技术进行处理。从vocs去除的角度来看,吸附浓缩技术可以有效降低废气中的vocs浓度,排气口tvocs 浓度从8.0 mg·m-3降至0.5 mg·m-3。值得注意的是,废气中检出的24种污染物的去除率和浓缩倍数有较大差异,浓度较高的丙酮、二氯甲烷、乙酸乙酯和2-丁酮等有较好的净化效果,而萘和氯苯等有机物的净化和浓缩倍数都不理想。由于沸石分子筛为无机水合硅铝酸盐成分,对于含硫废气的处理效果并不好,若用于含硫废气的除臭仍需组合其他工艺。此外,由于发酵尾气的相对湿度通常高于60%~80%,在进行吸附浓缩处理前需要采用过滤和除湿等前处理步骤。
当提取废气组分较复杂或回收成本过高、不具有回收价值时,可直接使用吸收法、化学氧化法和燃烧法等技术去除污染物。有研究表明,单纯双氧水、芬顿试剂、次氯酸钠溶液对丙酮气体的最大去除率可达85%以上,辅助15w 的uv 光照后能够促进·oh的产生,3种氧化剂对丙酮的去除率均提高5%以上。并且丙酮经过双氧水氧化后,尾气中除未反应完的丙酮外,仅有乙酸生成,而芬顿试剂氧化后的中间产物为乙酸和乙二酸,次氯酸钠溶液氧化后的中间产物为三氯甲烷[43,44]。
某生物发酵制药企业针对水解酸化池和絮凝沉淀池等单元产生的高浓度废气建立了中试试验,采用的处理工艺为“二级碱吸收 次氯酸钠氧化”,其中氧化喷淋塔中有效氯浓度为0.2%。对处理前后气体的监测结果表明,h2s和 nh3的处理效率分别为83.3%和86.3%,臭气浓度也从进气口8000降低为出气口的3000。值得注意的是,工业级次氯酸钠具有较大刺激性气味,作为喷淋的最后一级使用时极有可能造成气体出口的二次污染,因此应当后置水吸收或有其他有效处理工艺。
近年来,生物技术因投资少、性能可靠和二次污染小等特点被广泛用于市政恶臭的处理,在制药行业vocs和异味治理上的应用也越来越广泛。生物技术包括生物滴滤法、生物过滤法和生物洗涤法,其中,生物洗涤法一般只适合处理水溶性较好的气体,如醇类和酮类,对于大部分水溶性较差的vocs和异味的处理更多采用生物滴滤法和生物过滤法。生物滴滤法和生物过滤法在填料类型、喷淋方式的区别以及优缺点列于表4中。在某青霉素生产企业的污水处理站中,苯乙酸与h2s一起形成难闻的臭气,厂区的多数工人对这种混合废气过敏,除此之外,这种废气还会腐蚀混凝土和金属构筑物。当采用填充有zx03型填料的生物滴滤塔处理时,在不同进气浓度比例下,h2s的去除率均能够保持在95%以上。此外,在生物滴滤塔后安装一个活性炭吸附装置能够确保高浓度负荷情况下苯乙酸的有效去除,并且此方法对生物滴滤塔压力损失小,可长期稳定运行。balasubramanian 等在生物滴滤塔对单纯甲醇、乙醇、丙酮、甲苯以及四者混合气体去除效率的研究中表明,入口容积负荷(ilr)、空床停留时间和物质本身的性质均是影响去除效率的重要因素,此外,不同污染物间的竞争关系能够造成混合气体处理效率的降低,当处理混合气体时,ilrmax 仅为240 g·(m3·h)-1,4 种污染物质分别进行处理时,ilrmax 能够达到380 g·(m3·h)-1。生物过滤法处理某制药厂污水处理站好氧池产生的较低浓度异味气体的中试试验表明,以脱硫芽孢杆菌为主的复合菌群对h2s及nh3的处理效果均较稳定,处理效率分别可达98.1%和95.1%。
菌渣和污泥等固体废弃物普遍采用堆肥、焚烧、填埋等处置方式。发酵制药菌渣中含有大量的有机物,普遍具有高蛋白、高能量的特点,若经合理处置去除残留效价,可制作成有机肥料和饲料。例如,山东某阿维菌素制药企业将菌渣制成饲料蛋白和肥料,每吨售卖价格为500元,不仅使资源得到了再利用,也取得了可观的经济效益和社会效益。菌渣制肥通常需要采用高温干燥和造粒工艺,在这些过程中存在vocs和异味释放的问题。银川某发酵制药企业的复合肥生产线采用“二级喷淋 生物洗涤 电除雾 光氧化 低温等离子体氧化”组合工艺处理制肥废气,废气量约为7 万m3·h-1,虽然可以实现排口达标排放,但厂界臭气浓度仍时有超标。河南省某制药企业的抗生素菌渣干燥塔产生的废气采用“水膜除尘 碱液喷淋”处理工艺,可以实现排口烟尘、so2、nox、h2s和nh3等指标达标排放,处理气量近15万m3·h-1。
此外,由于不同企业间在产品、工艺、管理水平上的差异,废气污染排放特点可能存在相当大的差异,为常规监管和制定合理的治理技术方案带来一定难度。因此,企业或工业园区作为污染主体,应制定更切合自身情况的排放标准和污染防治技术规程,提高生产工艺水平的同时在管理水平上同步提高,推动生产与环保的良性循环,促进产业结构升级、帮助企业渡过阵痛期,才能实现企业的长远和健康发展。